Skagit River Flood Risk Management General Investigation

Hydraulic Effectiveness of Measures

23 January 2012

Objective

Determine "hydraulic effectiveness" of measures proposed for flood management in the lower Skagit River basin

Definitions

Hydraulic effectiveness is the impact of the measure on flow rates and water levels upstream and downstream from the measure location, and the impact on spill onto the floodplain.

A **measure** is a proposed project that provides stand-alone flood damage reduction benefits.

Some Limitations

- Considers "hydraulic effectiveness" only.
- No analysis of cost.
- No analysis of environmental or cultural impacts.
- List of measures analyzed is not complete. It is expected that additional measures will be considered as the study proceeds.
- Skagit River complexity makes evaluation of measures rather than alternatives difficult

Measures Considered

	Mea	Measure										
1	Incre	eased Upper Baker Storage										
	a.	a. 74,000 acre-ft Upper Baker flood control storage, 0 cfs minimum release										
	b.	b. 85,000 acre-ft Upper Baker flood control storage, 0 cfs minimum release										
	c.	100,000 acre-ft Upper Baker flood control storage, 0 cfs minimum release										
	d.	d. 110,000 acre-ft Upper Baker flood control storage, 0 cfs minimum release										
2	Incre	Increased Early Flood Control Season Storage at Upper Baker										
3	Incre	Increased Early Flood Control Season Storage at Upper Baker and Ross										
4	Mou	nt Vernon Flood Wall										
5	Burli	Burlington Urban Levee										
6	Thre	e Bridge Corridor Improvements										
	a.	With levee setbacks and bridge modifications ("with bridge modifications")										
	b.	With levee setbacks only ("without bridge modifications")										

Measures Considered (cont.)

	Measure									
7	Base Condition Measures (includes Mount Vernon Floodwall, Burlington Urban Levee and Three Bridge Corridor Improvements)									
8	Nookachamps Storage									
	a. Nookachamps Low Storage option									
	b. Nookachamps High Storage option									
9	North Mount Vernon (Riverbend) Levee									
10	Sterling Levee									
11	Improve Existing Levees									
12	Levee Setbacks									

Measures Considered (cont.)

	Me	Measure										
13	Fir	Fir Island and Mount Vernon Bypasses										
	a.	Fir Island Bypass (diversion at North Fork RM 7.0)										
	b.	b. Fir Island Bypass + Mount Vernon Bypass										
14	Swi	Swinomish Bypass										
15	Improve Outlet Structures											
	a.	Joe Leary Slough Outlet Structure										
16	Oth	ner Facility and Community Levees										
	a.	United General Hospital										
	b.	Clear Lake										
	c.	West Mount Vernon										
	d.	La Conner										
	e.	Sedro-Woolley and Sedro-Woolley WWTP										

Methodology

Upper Baker and Ross storage measures:

- Analyzed using spreadsheet-based reservoir routing model
- Hydraulic effectiveness based on change in regulated peak discharge at USGS Concrete gage relative to existing operation.

Methodology (cont.)

Levee, Bypass, 3-Bridge Corridor & Nookachamps measures:

- Analyzed using 1-D HEC-RAS model.
- Hydraulic effectiveness based on change in Skagit River in-channel flows and water levels, spills onto the floodplain, and water levels in the Nookachamps and Riverbend storage areas.
- Floodplain flows and extent of inundation not considered other than for the Nookachamps and Riverbend areas.

Methodology (cont.)

Improve Outlet Structure measure:

- Analyzed improved outlet structure for Joe Leary Slough only to provide example for outlet structures in general.
- Analyzed using stand-alone 1-D HEC-RAS model.
- Hydraulic effectiveness based on change in draw down time of flood water stored behind sea dike.

Facility and Community Levees:

- Assessment of impacts varied by location.
- Designs will depend on impact of other larger flood management measures.

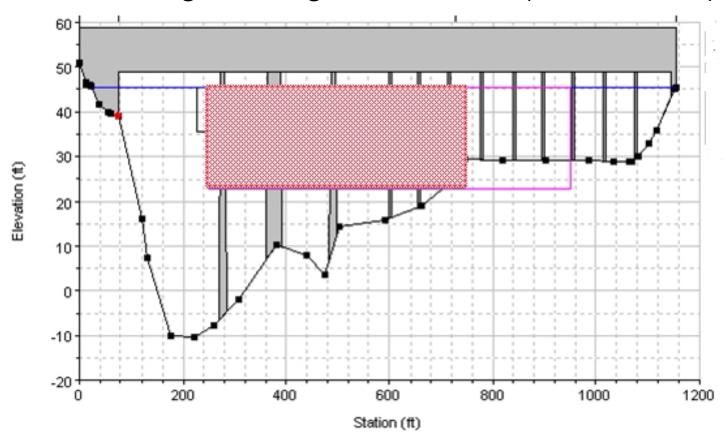
Some Assumptions

- Hydrology and existing condition hydraulic model from most recent (March/April 2011) USACE report
- Levee overtopping occurs but no breaches.
- No flood fighting.
- "Average" debris loads on BNSF and Great Northern bridges, no debris elsewhere.

Debris Loads

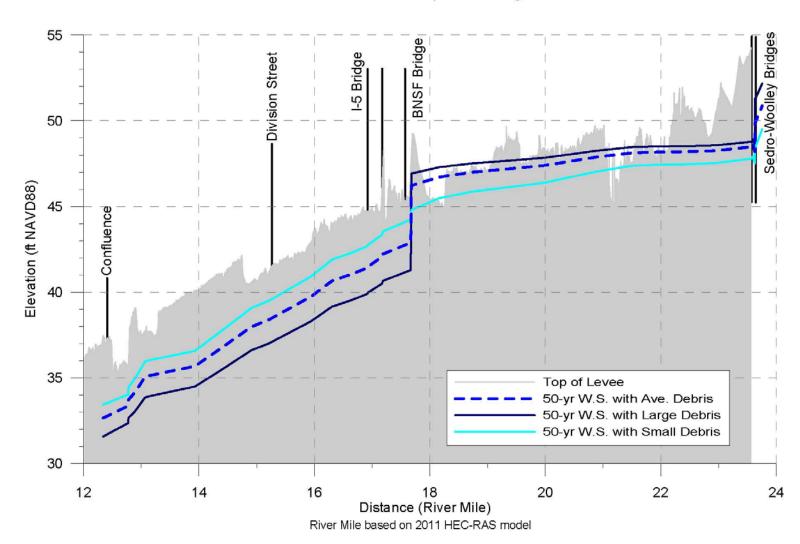
November 1995: Debris jam on BNSF bridge - 500 ft wide x 15-20 ft deep

Debris Loads


Debris Jam Parameters BNSF Bridge

Flood Class	Debris Load	Width of	Depth of		
		Blockage	Blockage		
		(ft.)	(ft.)		
	Low	300	10		
Large (25-yr event and larger)	Average	500	20		
and larger)	High	700	20		

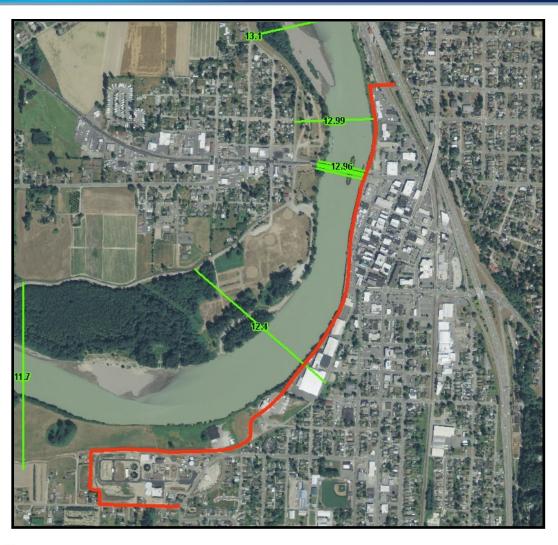
Debris Loads (cont.)


BNSF Bridge Average Debris Jam (500 ft x 20 ft)

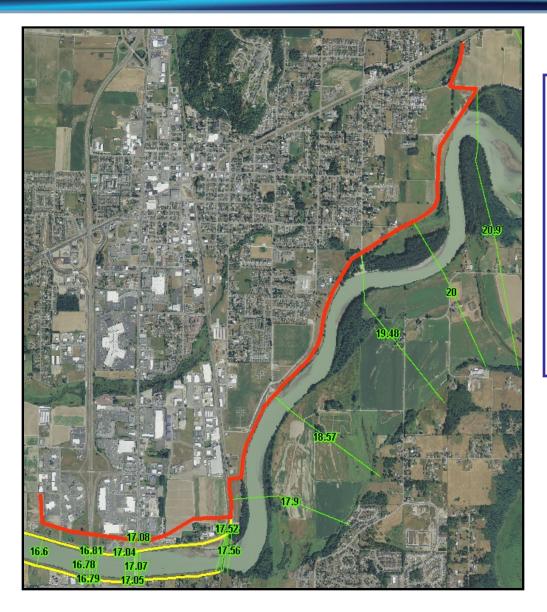
Impacts of Varying Debris Load

Mainstem Skagit River 50-yr Water Surface Profiles with Various Debris Scenarios compared to Right Bank Levee

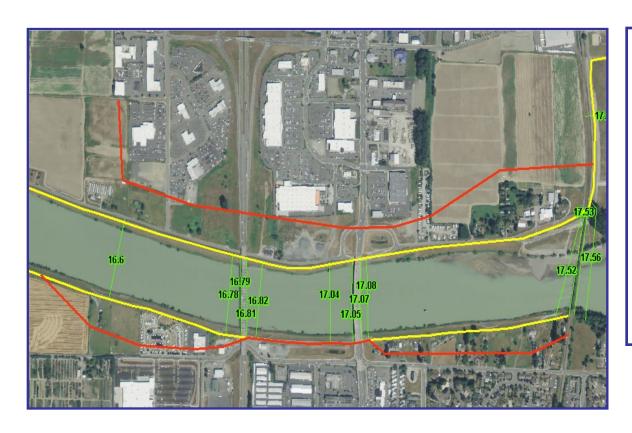
Key Spill Locations



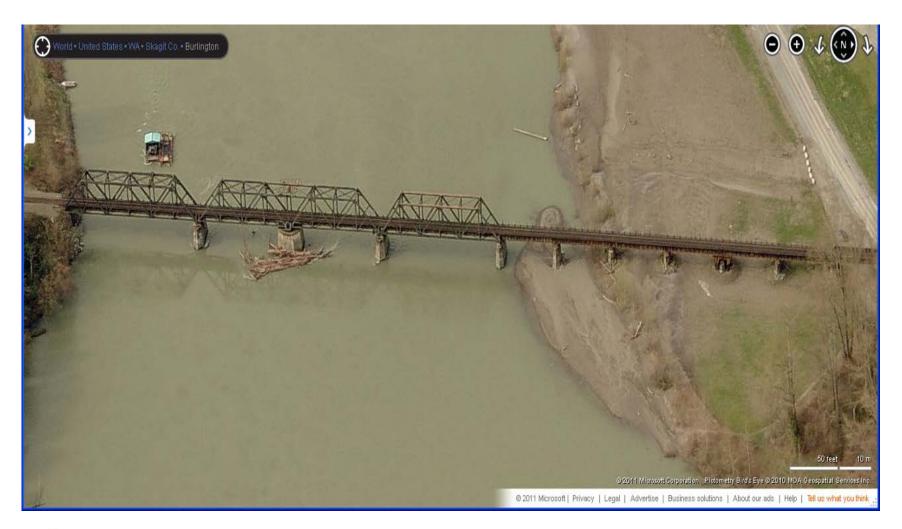
Key Spill Locations (cont.)


Mount Vernon Flood Wall

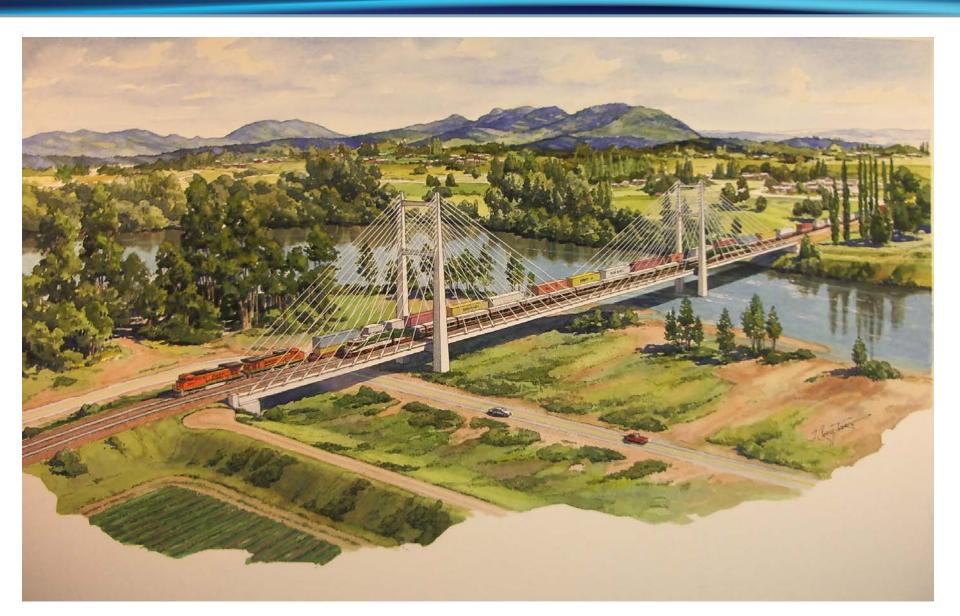
- Provide 100-year protection to urban area
- Combination of flood wall and levee per PIE design from about RM13.0 to RM 11.8
- Considered as measure rather than Existing Condition


Burlington Urban Levee

- Provide 100-year protection to urban area
- Improve existing levee SR-20 to about RM 17.9.
- Setback levee through Three Bridge Corridor.
- Tie in to high ground at u/s end to be determined.


Three Bridge Corridor

- Setback levees through Three Bridge Corridor with and without bridge improvements.
- Right bank setback levee part of Burlington Urban Levee measure.
- Bridge improvements: setback bridge abutments and replace BNSF bridge.



Existing BNSF Bridge

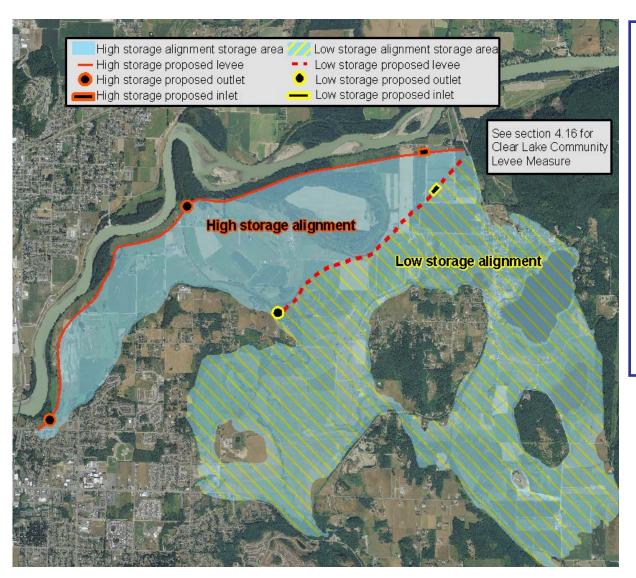
Hypothetical BNSF Bridge Replacement

Performance – 50-yr Event

Medsuro	Spill Sterling	Spill Buri, Lo.	W. Mookock	O USGS GAR	W. USGS. G.S.	O FOTHS (C/S)	W. FORS	Spill BNSF L	Spill N Fit * C.	LA (Cr.)
Existing	30,300	6,300	48.2	146,700		145,100	27.7	1,500	2,100	
Mt Vernon Flood Wall	+100	+100	+0.0	-300	+0.0	+1,200	+0.1	-1,500	+1,000	
Burlington Levee	+2,500	-6,300	+0.1	+2,400	+0.2	+1,900	+0.1	+500	+700	
Three Bridge Corridor w/o bridge mods	-1,100	-500	+0.0	+1,300	+0.1	+1,100	+0.1	+300	+300	
Three Bridge Corridor w bridge mods	-13,000	-6,300	-0.8	+13,300	+1.3	+9,800	+0.7	+3,500	+2,600	
Base w/o bridge mods	+1,300	-6300	+0.1	+3,200	+0.4	+4,700	+0.3	-1,500	+1700	
Base w bridge mods	-10,200	-6,300	-0.5	+10,800	+1.2	+12,200	+0.8	-1,500	+3,100	

Q Sedro Woolley

187,500 cfs


Performance – 100-yr Event

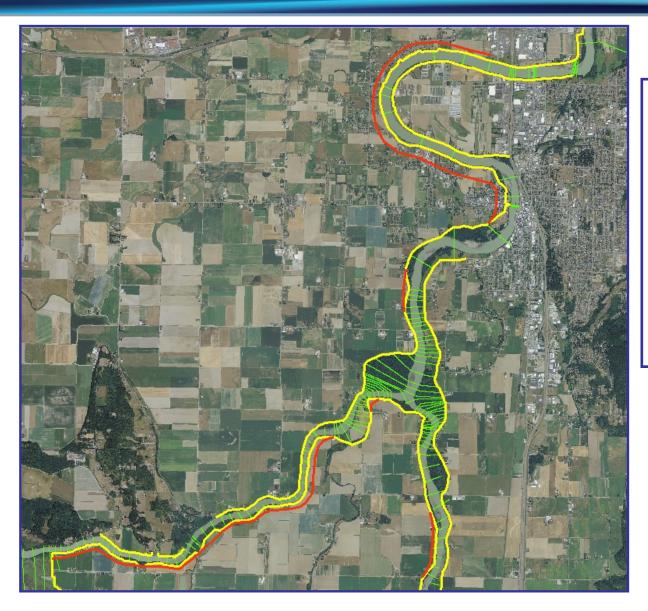
				,		,				
Messure Burges	Spill Sterling	Spill Buri. La.	Mookach (Crs)	VSGS GAO	W. USGS. G.S.	FOTES (25)	W. COMS	Spill BNSF to	Soil NFK + SO	C P (Crs)
<u> </u>	/ od	/ o d	<u> </u>	/o &	\ <u>Z</u> , &	/o	<u> </u>	/ or	/ or	
Existing	50,300	18,600	49.0	154,200	42.7	150,800	28.2	3,300	4,100	
Mt Vernon Flood Wall	+200	+400	+0.0	-600	+0.0	+2,600	+0.1	-3,300	+400	
Burlington Levee	+9,500	-18,600	+0.4	+6,600	+0.6	+4,500	+0.3	+2100	+800	
Three Bridge Corridor w/o bridge mods	-800	-1,300	+0.0	+1,900	+0.1	+1,400	+0.1	+600	+300	
Three Bridge Corridor w bridge mods	-10,400	-12,200	-0.4	+18,800	+1.7	+11,800	+0.8	+6,900	+2,700	
Base w/o bridge mods	+8,400	-18,600	+0.3	+7,300	+0.8	+10,500	+0.7	-3,200	+2,300	
Base w bridge mods	-3,300	-18,600	-0.1	+16,800	+1.7	+18,500	+1.1	-2,300	+5,600	

Q Sedro Woolley

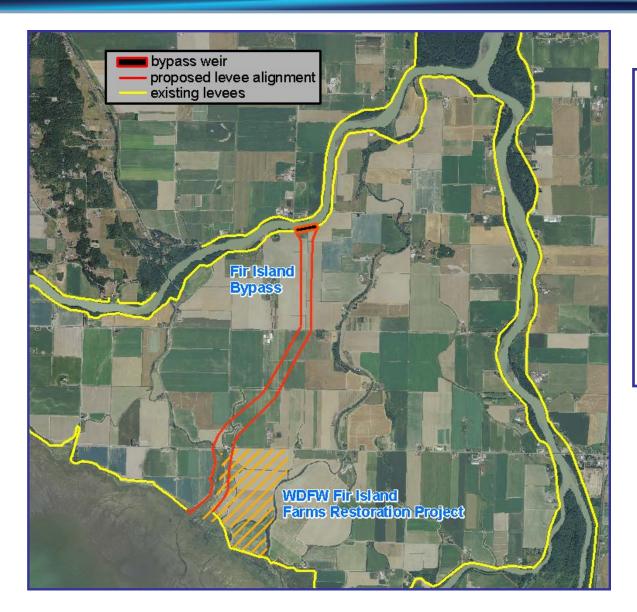

222,700 cfs

Nookachamps Storage

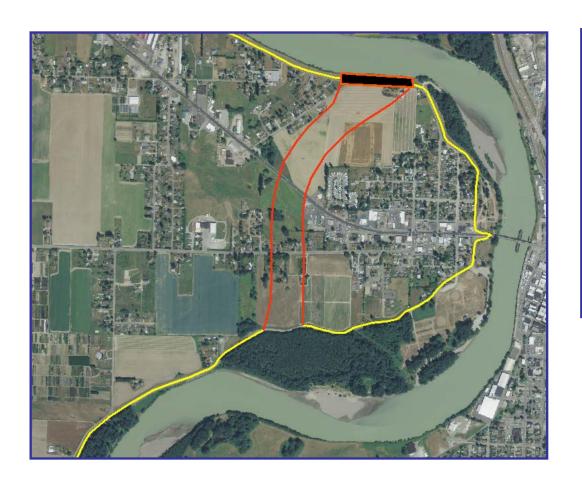
- Low storage option
 ~51,000 acre-ft.
- High storage option ~79,000 acre-ft.
- Inlet structure consisting of overflow weir, crest elevation 27 ft with fuse gates.
- Outlet structure, flap gates with 100 ft x 20 ft total opening.


Sterling Levee

- Several possible levee alignments – alignment along SR-20 for illustration only.
- Levee crest elevation set to just prevent spill during 50-year existing condition peak discharge with average debris on BNSF bridge.

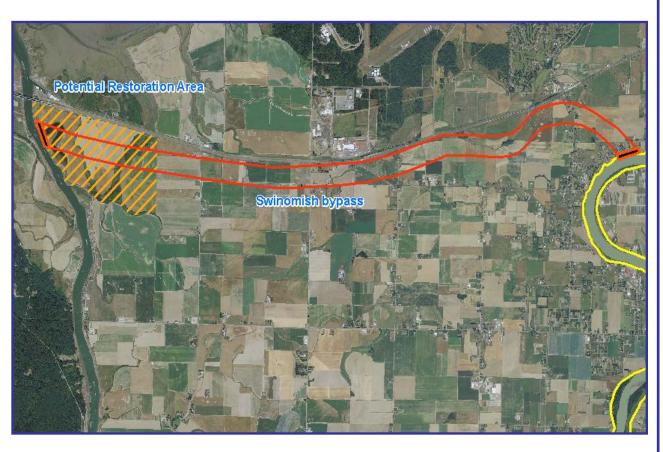


Levee Setback


- Levee setback downstream from Three-Bridge Corridor.
- 1,500 ft minimum corridor width main stem Skagit.
- 1,000 ft minimum corridor width North and South Forks.

Fir Island Bypass

- 1,000 ft long diversion weir with crest elevation at 15.0 ft (approx. 2-yr water surface elevation).
- 500 ft wide 3 mile long leveed bypass channel at existing ground elevation.
- Tie in to existing levee at u/s end and sea dikes at d/s end.


Mount Vernon Bypass

- 1,000 ft long diversion weir with crest elevation at 29.0 ft (approx. 2-yr water surface elevation).
- 500 ft wide 0.8 mile long leveed bypass channel at existing ground elevation.
- Tie in to existing levees at either end.

Swinomish Bypass

- Diversion structure consisting of three 200-ft long fuse plug levee sections triggered at ~150,000 cfs (50-yr flow, Base w/o bridge mods)
- 1,000 ft wide leveed bypass channel extending about 7 miles to Swinomish Slough.
- 40 ft wide excavated drainage channel.
- Outlet Structure u/s of Swinomish Slough to prevent tidal flooding

Performance – 50-yr Event (cont.)

Messure	Soil Sterling	M Nookaci	Samen O USES GOLD	M. USGS.	O Forks (cfs.)	My Forks	Spill BNSF F	Spill NEK + S	O ByDass(Crs)	
Base w/o bridge mods	31,600	48.3	150,000		149,800		0	3,900	n/a	
Nookachamps (low storage)	-6,600	-0.9	-5,000	-0.5	-5,500	-0.4	+0	-2,000	n/a	
Nookachamps (high storage)	-7,100	-0.5	-18,900	-2.0	-19,200	-1.6	+0	-3,400	n/a	
Sterling Levee	-26,500	+1.5	+16,500	+1.7	+16,100	+1.1	+500	+4,100	n/a	
Levee Setback	-3,600	-0.2	+3,800	-0.5	+3,800	-0.2	+0	-1,200	n/a	
Fir + Mt Vernon Bypass	-2,500	-0.1	+3,300	-0.4	+3,500	+0.0	+0	+100	25,500 Mt V 10,900 Fir Is	
Swinomish Bypass	-9,000	-0.5	+14,000	-1.4	-14,300	-1.1	+0	-3,300	32,400	

Q Sedro Woolley

187,500 cfs

Performance – 100yr Event (cont.)

Measure	Spill Storling	W NooHact	O USGS GAR	M. USGS GS	O Forks (crs.)	W. FORS	Spill BNSF L	Spill NFK + S	O ByDass(Crs)	
Base w/o bridge mods	58,700	49.3	161,500	43.5	161,300		0	6,400	n/a	
Nookachamps (low storage)	-10,900	+0.3	-5,700	-0.5	-5,600	-0.4	+0	-1,400	n/a	
Nookachamps (high storage)	-7,100	+0.4	-19,300	-1.9	-19,300	-1.3	+0	-4,800	n/a	
Sterling Levee	-28,700	+1.4	+30,300	+2.2	+17,200	+0.9	+12,400	+8,900	n/a	
Levee Setback	-5,400	-0.2	+5,500	-0.5	+5,400	-0.1	+100	-700	n/a	
Fir + Mt Vernon Bypass	-4,000	-0.1	+4,000	-0.4	+4,300	+0.1	+0	+200	29,100 Mt V 12,100 Fir Is	
Swinomish Bypass	-19,200	-0.7	+20,800	-2.3	-24,600	-1.8	+0	-5,600	48,000	

Q Sedro Woolley

222,700 cfs

Questions

- Should spill be controlled at Sterling and if so how and to what degree?
- How should impacts of possible future BNSF bridge replacement be accounted for?

